
Journal of Engineering Mathematics 44: 259–276, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Liquid impact, kinetic energy loss and compressibility:
Lagrangian, Eulerian and acoustic viewpoints

MARK J. COOKER
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England. E-mail: m.cooker@uea.ac.uk

14 November 2001; accepted in revised form 29 July 2002

Abstract. From Lagrange’s equations of incompressible fluid motion a model is derived for the collision between
a liquid mass and a solid surface. The classical idea of pressure impulse, P , is re-expressed as a quantity following
the fluid-particle motion. It is shown that within this formulation P = 0 is the exact free-surface boundary
condition and the domain of definition of P is unambiguously time-independent. Some of the total kinetic energy
of the fluid is lost during impact and this is associated with the usual choice of boundary condition for inelastic
impact. With elastic impact, in which the fluid rebounds from the solid target, there is no kinetic energy loss.
Some simple potentials are used to express P for incompressible fluid impacts, which have non-singular velocity
fields: (i) in an acute wedge; (ii) in a cylindrical container; and (iii) in an idealised sea-wave impact. In the last
the impact of a triangular fluid domain, T, illustrates kinetic energy loss from an impacting sea wave. Impact is
also investigated for the collision of T with a movable solid block. The subsequent displacement of the block,
with friction, is also calculated. Lastly a solution is obtained within T composed of a compressible fluid impacting
a rigid wall. Standing compression-waves store within T some of the kinetic energy lost from the incident wave
water.
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1. Introduction

The collision between a liquid mass and a solid surface can be modelled by methods dating
from Lamb ([1, Section 11]), who treated the impulsive motion of a liquid impelled from rest.
The application of the theory to moving bodies of water meeting solid surfaces at rest has been
developed by Cooker and Peregrine ([2],[3]), Chan [4] and Cooker and Vanden-Broeck [5],
to encompass the impact of a sea wave against a coastal structure. Korobkin [6] has modelled
the influence of fluid compressibility. Korobkin and Pukhnachov [7], and Zhang, Yue and
Tanizawa [8] have described the effect of the elastic deformation of the target. But in most
studies the solid surface struck by the fluid is rigid. Korobkin and Wu [9] have used Lagrangian
variables to calculate the free-surface displacement due to a suddenly moved floating cylinder.

The theory used in the present work relies upon the idea of pressure impulse, P , a function
of position within the fluid domain at the instant of impact. The pressure impulse is classically
defined to be the time-integral of the pressure over the brief duration, �t , during which the
impact occurs. From pressure records at fixed locations, experiments show that the pressure
rises rapidly and falls in a characteristic spike. We identify the width of this spike in pressure
with �t . The factors which govern the short time-scale �t are not well-understood, but for
an incompressible fluid it may be related to the time it takes for the moving contact line
to travel across that part of the boundary which can be identified as the zone of impact.
Typical laboratory-scale measurements show �t is very brief compared with the usual time



260 M. J. Cooker

scales associated with water wave propagation: the pressure rises and falls between 0·5 and
10 milliseconds. And at full scale�t is longer: up to 100 milliseconds. These measured impact
times are much briefer than the corresponding period of the incident waves (between 1 and
10 seconds). Further, for a breaking wave of height L and incident water speed U0, the time
scale L/U0 is 0·1 seconds for small scale waves in the laboratory and about 1 second in the
field. We conclude from the reported measurements that �t is much shorter than L/U0.

Bagnold [10] discussed the concept of pressure impulse for fixed points on a vertical wall,
at which he made pressure measurements, of waves striking the wall with height approxi-
mately 10cm. Here we emphasise the treatment of pressure impulse as a field whose gradient
is crucial to understanding the changes which occur to the velocity field during impact.

If U0 is a typical flow speed, and if L is a length scale of the impacting fluid region, then
we can define primed, dimensionless variables as follows: velocity u′ = u/U0, coordinates
x′ = x/L, time t ′ = t/�t , and pressure p′ = p/p0, where we defer the definition of the
constant p0. The time scale L/U0 is associated with temporal changes in the incident flow
before impact; L/U0 is much longer than the time �t during which the impact occurs. Since
we are focussing on the unsteadiness during impact it is sensible to make time t dimensionless
with respect to �t and not L/U0. Consequently, in dimensionless form, Euler’s equations are

u′
t ′ + ε(u′.∇′)u′ = − p0�t

ρLU0
∇′p′ − g�t

U0
k. (1)

In Equation (1) the dimensionless quantity ε = U0�t/L can be used to indicate the violence
of impact. The magnitude of 1/ε = p0/(ρU0

2), hence the smaller the value of ε the greater
the relative impact pressure scale p0. When ε is much less than unity, provided |(u′.∇′)u′| is
not large, Equation (1) shows that one may neglect the nonlinear terms of Euler’s equations.
Further, the acceleration due to gravity, −gk, has a modulus which in practice is small com-
pared with that of the fluid acceleration during impact (of magnitude U0/�t). It is therefore
true that |g�t/U0| � 1, and the dimensionless gravitational term in Equation (1) is negligible
compared with the inertia of the fluid.

In order to obtain an O(1) coefficient for the pressure-gradient term (and so provide some
balance of terms in (1)) it is necessary to take p0 = ρLU0/�t . A consequence of these
assumptions is that the expected pressures of impact are p0 	 ρgL, hence Froude-Law
scaling is inappropriate. Also the smaller the impact time �t the greater the peak pressure
scale p0.

Neglecting the second and fourth terms, Equation (1) is integrated with respect to time
over the brief duration, �t , of the impact. For an incompressible fluid of constant density this
simplifies to the following dimensional form:

V2 − V1 = −ρ−1∇P, (2)

where P is the pressure impulse, defined above and V1 and V2 denote the fluid velocity just
before, and just after impact, respectively. The subscripts 1 and 2 on a quantity denote before
and after impact, respectively, throughout. In typical boundary-value-problems one usually
knows V1 and wishes to find V2.

If the fluid is incompressible then the divergence of Equation (2) shows that P satisfies
Laplace’s equation:

∂2P

∂x2
+ ∂2P

∂y2
+ ∂2P

∂z2
= 0. (3)
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Next consider fluid colliding with a solid, rigid, impermeable surface which has a unit
normal n, pointing into the solid, away from the fluid. Let V1n denote the velocity component
in the direction n. If the fluid remains in contact with the boundary after impact then the scalar
product of n with Equation (2) gives the boundary condition

∂P

∂n
= ρV1n. (4)

This corresponds to the familiar inelastic impact on a rigid surface in classical particle me-
chanics. By contrast, for an elastic impact V2n = −V1n and the RHS of (4) must be doubled.
Such a boundary condition was first used by Wood [11] and Wood, Peregrine and Bruce [12].
If the solid target is movable then further information about the flow before and after impact
must be obtained from an equation of motion of the target. We discuss this further in Section 5.
On those parts of an impermeable boundary where no impact occurs V1n = 0 and the boundary
condition is ∂P/∂n = 0.

Lastly, on a free surface, the pressure is zero (reference) for all time, so it is customary to
take the boundary condition as

P = 0. (5)

It was pointed out by Cooker and Vanden-Broeck [5], that the free-surface boundary condition
(5) is problematic. For some geometries, during impact the waterline can move at such high
speed that one might doubt that ε remains small. Further, a fixed geometric point, with position
vector r, which lies on the free surface position at the initial instant of impact, will be left
behind as the free surface moves. Either the point at r is left high-and-dry or it becomes
submerged. At r the pressure may deviate somewhat from zero. So is P = 0 the appropriate
free-surface boundary condition?

We answer this question in the affirmative in the next section by deriving a model from
Lagrange’s equations of motion. We go on in Section 3 to discuss energy conservation. In
Section 4 some examples of pressure impulse are presented, which although mathematically
simple reveal much about the behaviour of impacting fluid flows, especially near waterlines.
An exact solution in a right-angled, isosceles triangle, T, is a convenient non-singular expres-
sion for P with which to illustrate energy conservation. In Section 5, T collides with either a
fixed or a movable solid mass. In Section 6 we find an exact solution of the acoustic equations
suitable for when the fluid in T is slightly compressible. Conclusions are drawn in Section 7.

2. Analysis from Lagrange’s equations

Let X(x, t) denote the position vector of F a fluid particle. At the start of impact, X = x, so that
we can interpret x as an unchanging label for F. The components of x and t are independent
variables. The velocity of F at any time is

V(x, t) = ∂X
∂t
. (6)

We will now describe an impact in which V changes rapidly from V1(x) to V2(x) in the
short time interval [−τ, τ ], where τ = �t/2. The constant τ > 0 is assumed to be the same
throughout the fluid domain; a reasonable assumption for a fluid in which pressure changes
are communicated at a sound speed much greater than the fluid speed. Before impact (t < −τ )
the velocity field changes relatively slowly, on a time-scale T which is much longer than the
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impact time scale τ . Similarly, after impact (t > τ ) we suppose V2 changes slowly. However,
during impact (−τ ≤ t ≤ τ) the fluid acceleration is much greater than at all other times.
These considerations can be encapsulated in the following ansatz for the position vector X of
the fluid particle F during impact:

X(x, t) = x + h1(t)V1(x)+ h2(t)V2(x), (7)

where the functions h1 and h2 are arranged to ensure that ∂X/∂t changes from V1 to V2 in the
time interval [−τ, τ ]. Now h1 and h2 must be smooth enough functions of time to ensure that
the fluid velocity changes smoothly from V1 to V2. Both h1 and h2 must have (a) a magnitude
of order τ and (b) continuous first derivatives of magnitude no greater than order (1). The
violation of (b) would suggest that an impact was occurring on a yet shorter time scale than
τ . In order that the theory can encompass flows for which there is a vanishingly small change
in the velocity field (V1 = V2 = ∂X/∂t) we need ḣ1(t)+ ḣ2(t) = 1 for all t . We do not have
to specify the functions explicitly to reach the key conclusion below (Equation (17)), but for
definiteness we provide an example of functions which will do

h1(t) = τ + t for t :≤ −τ,
h1(t) = τ − (t − τ)2/(4τ) for t : −τ ≤ t ≤ τ,

h1(t) = τ for t : τ ≤ t,

(8)

and

h2(t) = 0 for t : t ≤ −τ,
h2(t) = (t + τ)2/(4τ) for t : −τ ≤ t ≤ τ,

h2(t) = t for t : τ ≤ t.

(9)

The fluid acceleration is so much greater than the acceleration due to gravity, g, that we
neglect gravity. Consequently Lagrange’s equations of motion are:

XttXx + YttYx + ZttZx = −ρ−1px, (10)

XttXy + YttYy + ZttZy = −ρ−1py, (11)

XttXz + YttYz + ZttZz = −ρ−1pz, (12)

where subscripts which are variables denote partial derivatives, p(x, t) is the pressure follow-
ing a particle and ρ is the constant density. Since the treatment is similar for all three equations
we consider Equation (10) alone. We integrate it with respect to time over the interval of
impact [−τ, τ ]. After integration by parts, we have

[XtXx + YtYx + ZtZx]τ−τ − 1

2

∂

∂x

∫ τ

−τ
(Xt

2 + Yt
2 + Zt

2)dt = −ρ−1Px, (13)

where the pressure impulse P is defined by

P(x) =
∫ τ

−τ
p(x, t)dt. (14)
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Formally this definition of pressure impulse, P , is a different quantity from that presented in
the introduction, because here the integration follows a fluid particle, F, through both time
and space. However, for the most violent impacts (in the limit as ε → 0), the two definitions
coincide. From (14), if F lies on the free-surface then the pressure p = 0. Hence on the free
surface the pressure impulse P = 0, exactly. This confirms Equation (5).

Substituting (7) in (13) gives

U2 − U1 − 1

2

∂V1
2

∂x

∫ τ

−τ
ḣ2

1dt + 1

2

∂V2
2

∂x

[
τ −

∫ τ

−τ
ḣ2

2dt

]
− ∂V1·V2

∂x

∫ τ

−τ
ḣ1ḣ2dt+

+τV2·∂V1

∂x
= −ρ−1Px

(15)

where (U1, V1,W1) are the components of V1 and (U2, V2,W2) are those of V2.
In general, in (15), ḣ1 and ḣ2 are of order unity. Therefore all three integrals in Equa-

tion (15) are of order τ . (Hence, in the limit as τ → 0, we obtain the x-component of
Equation (17) below.) For definiteness we calculate the integrals for the example functions
(8, 9):

U2 − U1 + τ

6
(−4V1·V1x + 2V2·V2x − V1·V2x + 5V2·V1x) = −ρ−1Px. (16)

The other two componenent equations are similar.
By using the scalings introduced for Equation (1) we can make (16) dimensionless, and the

coefficient (τ/6) of the nonlinear terms is replaced by τU0/(6L) = �tU0/(12L) = ε/12. By
letting τ → 0 we obtain the same limit as that presented in the introduction, by letting ε → 0;
provided the nonlinear convective terms remain bounded in magnitude. Hence as ε → 0 we
conclude the general result

V2 − V1 = −ρ−1∇P, (17)

where the gradient operator is with respect to either the Lagrangian point-label coordinates
x, y, z or the identical (in this limit) Eulerian coordinates of Equation (2).

In Lagrangian coordinates, the equation of mass continuity for an incompressible fluid of
constant density is

∂(X, Y,Z)

∂(x, y, z)
= 1. (18)

Substitution of the ansatz (7) gives the following approximation to Equation (18), in which
the products h1

2, h1h2, h2
2 have been neglected compared with h1 and h2

h1(U1x + V1y +W1z)+ h2(U2x + V2y +W2z) = 0. (19)

By setting t = 0 then t = τ one deduces that ∇·V1 = 0 and ∇·V2 = 0. By taking the
divergence of Equation (17) one finds that P satisfies Laplace’s Equation (3). The boundary
conditions on solid surfaces, in the impact zone and elsewhere, also coincide with those stated
in the introduction.

The analysis agrees with the classical equations of pressure impulse theory, but with three
differences of interpretation: (a) the pressure impulse P is now defined for each and every
fluid particle, (b) the free-surface condition P = 0 is exact, and (c) the domain, D, in which
a boundary-value problem for P is posed, is unambiguously time-independent. Here D is the
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domain of Lagrangian particle labels x, and for all τ > 0 it coincides with the region of fluid
in physical space at the start of impact.

3. Energy conservation

Wu [13] highlighted a discrepancy between formulas which claim to account for the force on
a rigid body during water entry. Scolan and Korobkin [14], and Fontaine, Molin and Cointe
[17] have shown that if a rigid mass enters a half-space of initially still water, at constant
velocity then half of the work done by the body on the fluid can be accounted for by the
kinetic energy of high-speed jets. These splash-jets lie so close to the body that their resolution
needs special asymptotic treatment in the examples they model. Korobkin [6, Equation 16],
made a calculation which suggested that one quarter of the energy is radiated to infinity in the
collision of a prismatic jet of fluid, at normal incidence, onto a plane, rigid wall. This result
has been superseded by the work of Kovobkin and Pevegnine [18]. The proportion of energy
radiated depends strongly on the variation of velocity during impact.

We now account for the energy of the flow before and after impact for our incompressible
fluid model. During the short time of impact the liquid displacement is small because ε � 1.
Hence, in the following, any small changes in the gravitational potential energy are neglected.

Let KE1 and KE2 be the kinetic energies of the fluid domain before and after impact,
respectively. Then the amount of kinetic energy lost during impact is

KE1 −KE2 =
∫ ∫

D

ρ

2

(
V1

2 − V2
2) dxdy, (20)

where the integral is over the fluid domain D. Substituting for V2 from Equation (2), applying
the divergence theorem to ∇·(2ρPV1 −P∇P), and using the boundary conditions, we arrive
at an integral over only that part I of the solid boundary impacted by fluid:

KE1 −KE2 =
∫
I

P

(
V1n − 1

2ρ

∂P

∂n

)
dS. (21)

where dS is an infinitessimal element of area of I and V1n is the velocity component along the
unit normal. This result is implicit in the work of Lamb ([1, articles 11, 44, 61]) and has been
discussed by Wu [13], Scolan and Korobkin [14], Szymczak [15] and Rogers and Szymczak
[16]. See also [2].

For impact in which the fluid remains in contact with the wall after impact, the boundary
condition is ∂P/∂n = ρV1n. But with this condition Equation (21) shows that there is a loss
of (kinetic) energy from the fluid domain. Since the wall and bed are rigid, fixed and imper-
meable, the wave cannot lose energy through these surfaces during impact by, for example,
doing mechanical work on the boundary. Since the fluid is incompressible the pressure in the
fluid cannot do internal work, by for example self-heating. For a compressible fluid in a finite
domain which has perfectly reflecting solid and free-surface boundaries, there is no chance
for sound waves to radiate energy to infinity, although stationary pressure waves can store
potential energy. Korobkin [6] makes clear that when acoustic waves are free to radiate energy
to infinity they do so as a direct consequence of the constraint of fluid staying in contact with
the wall during impact, despite the low pressures induced by reflections from the free surface.

The resolution of the paradox of energy loss in an incompressible fluid during impact lies
in Equation (21) and our recognition that an extra physical condition is imposed in assuming
that the fluid remains in contact with the wall after impact. If the fluid is in elastic impact



Liquid impact, kinetic energy loss and compressibility 265

with the wall, then the face of the wave bounces from the wall with a relative normal velocity
component equal and opposite to its incident value, V1n. The change in normal velocity at
the wall is therefore 2V1n and the wall boundary condition becomes ∂P/∂n = 2ρV1n. From
(21) it is seen that under these elastic-impact conditions the energy loss is zero. Elastic im-
pact is the only impact-boundary condition which accords with energy conservation for an
incompressible fluid impact.

4. Examples of pressure impulse for fluid impacts

4.1. IMPACT OF A FLUID WEDGE

When a sea wave overturns onto a beach or breaks against a seawall, a mass of water collides
with a fixed impermeable surface. We investigate a two-dimensional flow corresponding to
normal incidence of a sea wave onto a plane solid surface.

The fluid domain at the instant of impact is modelled as a wedge whose sides are the solid
surface being struck and the free surface. Let the apex of the wedge lie at the origin and let
the positive x-axis be the solid surface. The free surface is y = x tanα where α : 0 < α ≤ π

is the angle in the wedge immediately before impact. The fluid descends onto the x-axis with
a normal velocity component V1n = V0 where the constant V0 > 0. Hence the boundary
condition is ∂P/∂y = −ρV0 on y = 0. Now P = 0 on y − x tanα = 0, so we can guess the
exact solution to Equation (3)

P(x, y) = ρV0(x tanα − y). (22)

After impact the waterline, at O, moves with a velocity given by Equation (2) as V2 =
−iρ−1Px . The waterline travels at speed V0 tan α along the negative x-axis. The steeper the
wave impact the faster the waterline travels.

The expression (22) gives P ≥ 0 for acute wedge angles α : 0 < α < π . The isopotential
curves of P(x, y) are straight lines parallel to the free surface. However, for α : π/2 < α < π
the pressure impulse (22) is negative. Since P is the integral of the positive quantity pressure
we expect P < 0 to be unphysical. A further observation of (22) is that P is singular for
α = π/2. Clearly, a different solution is needed for obtuse wedge angles.

Okamura [19] has calculated the pressure impulse for a wedge-shaped wave impacting the
x-axis on the interval x : 0 ≤ x ≤ 1; on the remainder of the x-axis the fluid stays in contact
with the solid boundary. Okamura also imposed a far-field boundary condition P tends to 0.
He found that for α : π/2 ≤ α < π the speed of the waterline along the x-axis is singular at
x = 0. This may indicate the cirumstances in which a high-speed jet or tongue of water can
be projected up a beach by a wave impact.

4.2. AXISYMMETRIC IMPACT

Milne-Thomson [20, Examples XVII, Q44] leaves as an exercise the axisymmetric impact
of a circular cone whose base collides with an impermeable solid surface. A modification of
his potential can describe an impact on the interior curved walls of a circular cylinder; see
Figure 1. Such an impact might occur during the shaking of a container of water, fuel, or
food-stuff. More complex interior and exterior shaking problems, in cylindrical geometry, are
treated by Jacobsen [21].
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Figure 1. Cross-Section through the axis of an idealised fluid impact on the curved interior wall of a circular
cylinder. The z-axis is the axis of symmetry.

Let r, z be cylindrical polar coordinates. The impermeable base of the cylinder lies at z = 0
and the curved wall lies at r = R, where R > 0 is the constant radius of the cylinder. The
fluid lies inside the cylinder in part of the region z ≥ 0. The fluid stays in contact with the
bed during impact and it collides with the sidewall with a constant outward radial velocity
V0er , where er is the unit radial vector. A positive potential P , which satisfies the boundary
conditions on the wall and bed, is

P(r, z) = P0 + ρ
V0

2R

(
r2 − 2z2

)
, (23)

where P0 ≥ 0 is a constant.
The free surface is any surface on which the boundary condition P = 0 is satisfied. If

P0 = 0 then the free surface is the cone r = √
2z. More natural free-surface shapes can

be made by choosing P0 ≥ 0. For example, if P0 = z0
2ρV0/R, then the free surface is a

truncated hyperboloid which cuts the z-axis at z = z0. The waterline on the cylinder wall lies
at z = zR = z0(1 + R2/2z2

0)
1/2. By making z0 >> R the hyperboloidal free surface can be

made as flat as desired.
One consequence of the impact on the walls is the significant impulsive force on the base

of the cylinder. The impulse on the bed due to the fluid is −2πk
∫ R

0 P(r, 0)rdr, where k is the
unit vector along the positive z-axis, which is normal to the bed. The impulse has magnitude

I = πρV0R
2z0

(
z0

R
+ R

4z0

)
. (24)

The waterline rushes up the cylinder wall after impact: the increase in vertical velocity due
to the impact is WR, where

WR = − 1

ρ

∂P

∂z
(R, zR) = 2V0

z0

R

(
1 + R2

2z0
2

)1/2

. (25)

We now present a numerical example. If the fluid depth at the z-axis is z0 = 2R then at the
wall the depth is zR = 3z0/(2

√
2) = 1·06z0, hence the free surface is only slightly concave.
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Figure 2. Notation for an idealised water-wave im-
pact on a vertical wall. The wave meets the rigid wall
with velocity U0i. The bed at y = 0 is impermeable.

Figure 3. Wave impact on a movable block. For elas-
tic impact the wave face separates from the wall after
impact with a relative speed of separation U2 − Ut
equal to U0, the speed of impact. For inelastic im-
pact the wave face remains in contact with the block,
and they move forward together, with an initial
post-impact speed of U2 = Ut .

The waterline ascends with an increase in the vertical velocity of WR = 6V0/
√

2 = 4·2V0;
more than four times the speed of impact.

The impulse on the bed due to the fluid impacting the walls is

I = 17

8
πρV0R

2z0. (26)

By way of comparison, I is more than twice πρV0R
2z0, which is the impulse on the bed

due to the inelastic impact onto the bed, of a rigid body of mass πρR2z0, travelling at speed
V0. The enhancement of impulse by a factor of more than two, on the container bed, is due to
the close confinement of the fluid domain by impermeable walls. The increased impulse was
illustrated by Cooker and Peregrine [3] in rectangular containers.

4.3. TWO-DIMENSIONAL IMPACT: ISOSCELES TRIANGLE

Cooker and Peregrine [2,3] solved some boundary-value problems suitable for modelling the
impulsive flow generated by a sea wave impacting a coastal structure. See also Chan [4] for
his theoretical and experimental study of wave impact in deep water.

A straight vertical seawall is approached by a train of long-crested plane water waves.
It is recognised by coastal engineers that the highest forces are produced by waves which
approach the structure with their crests parallel to the seawall. Immediately before impact a
breaking wave can take a variety of shapes, but if it is of the plunging type then the wave may
have a well defined steep forward face. The highest impact pressures occur when the wave
face is parallel to the wall at the moment of impact. This tallies with the laboratory findings of
Bagnold [10] and subsequent experimenters, e.g. Whillock [22]. Sea wave impact has recently
been reviewed by Peregrine [23].

Cooker and Peregrine [3] consider a fluid domain which at the instant of impact has the
form of a right-angled isosceles triangle. The mathematical expression for P takes its sim-
plest form for an isosceles right-angled triangle, when the entire forward face of the wave
simultaneously impacts the vertical wall.
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Figure 2 shows the coordinates for a wave impacting a wall which is rigid (a movable wall
is considered in the discussion of Section 5). The normal component of velocity of the vertical
wave face immediately before impact is U0, a positive constant whose value can be chosen in
ways appropriate to the wave-breaking situation. In water of depth h photographic evidence
suggests that U0 is an order-one multiple of

√
gh. We assume that the wave face remains in

contact with the wall after impact. Hence the boundary condition on x = 0 is Px = ρU0. On
y = 0 the bed is impermeable hence Py = 0.

A suitable solution, which is positive in the triangular fluid domain, is

P(x, y) = ρ
U0

2R

([x + R]2 − y2) . (27)

The free-surface condition P = 0 is satisfied on the straight line y = R + x for x : −R ≤
x ≤ 0. Immediately after impact the velocity is finite everywhere. In particular the waterline,
at x = 0, y = R, ascends the wall with finite speed, U0.

Below we discuss the energy before and after impact relative to the wall boundary con-
dition. Instead of assuming the water stays in contact with the wall after impact, we follow
Wood [11] and suppose that the fluid ‘bounces back’ elastically from it. By this we mean the
(normal) fluid velocity component in the i direction, changes from U0 before impact to −U0

after impact. Then in Equation (27) we need only replace U0 by 2U0 to obtain the appropriate
solution. Consequently the velocity field after impact is more energetic. For example the top
of the triangle after impact has double the vertical component of velocity: 2U0 and it acquires
a horizontal velocity component U0 of rebound from the wall.

5. Impact with a movable block

Suppose we abandon the fiction of a rigid wall and consider a block of finite mass. This has
been analysed before by Goda [24, p.154] who treats a block restrained by elastic forces and
friction. Under failure the block is unlikely to be elastically attached to its foundations or
neighbouring blocks, which is why we model friction alone.

The block translates horizontally due to the impulse delivered by the wave impact. We ne-
glect friction during the small time of impact. Whether elastic or inelastic impact is modelled,
some kinetic energy is transferred from the wave to the block, and we calculate the loss for
inelastic impact in Section 5.2. In Section 5.3 we estimate the displacement of the block after
impact, when it moves under frictional resistance.

First an elastic impact is treated, then a more realistic inelastic impact is compared.

5.1. ELASTIC IMPACT

Consider the arrangement shown in Figure 3 in which an iscosceles, right-angled triangle
impacts the wall with uniform velocity U0i. After impact the wave face has horizontal velocity
component U2, which is the same at all points on the wave face. Hence the boundary condition
at x = 0 is ∂P/∂x = ρ(U0 − U2). The solution, P(x, y), is similar to the right-hand side of
Equation (27):

P(x, y) = ρ
(U0 − U2)

2R

([x + R]2 − y2) . (28)

Consequently the impulse I = I i exerted by the wave on the block is given by
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I =
∫ R

0
P(0, y)dy = 1

3
ρR2(U0 − U2). (29)

The block has a mass M, per unit length of shoreline, and moves from rest to a velocity
Ut i. The impulse on the mass equals its change of momentum: I = MUt . Therefore from
Equation (29)

1

3
ρR2(U0 − U2) = MUt. (30)

For an elastic impact the relative speed of departure of the wave face and wall equals their
relative speed of approach, hence

Ut − U2 = U0. (31)

The solution conserves (kinetic) energy. The results are presented in terms of U0 and the
dimensionless ratio q = ρR2/(3M) . The block acquires a velocity Ut = 2U0q/(1 + q).
The total impulse on the block is I = 2iMU0q/(1 + q). The horizontal velocity component
of the wave face after impact U2 = −U0(1 − q)/(1 + q). The field of pressure impulse, P , is
given by replacing U0 by 2U0/(1 + q) in the expression (27)

If the mass M of the block is much greater than the mass ρR2/2 of the wave then q � 1
and we recover the results for elastic impact on a rigid wall. Under these circumstances the
impulse I achieves its greatest magnitude. At the other extreme, ifM � ρR2/2 then the limit
q → ∞ reveals the wave velocity is unchanged from U0 and the block is kicked forwards
with a velocity 2U0i. If q = 1 then the front face of the wave is brought to a halt and the block
moves on with speed Ut = U0. The condition q = 1 means M = ρR2/3, which is two-thirds
of the mass of the wave.

5.2. INELASTIC IMPACT

More realistic than the above treatment is the assumption that the face of the wave remains in
contact with the block after impact, so that U2 = Ut . The impulse I due to the fluid on the
block is given by (29) and equals

1

3
ρR2(U0 − Ut) = MUt, (32)

which implies

Ut = U0
q

1 + q
, (33)

where, as before, q = ρR2/(3M). For inelastic impact Ut is half of the speed found earlier
for elastic impact. The impulse on the wall is

I = MU0
q

1 + q
, (34)

which is half the impulse for elastic impact.
Energy is not conserved. In the notation of Section 3 the kinetic energy of the system before

impact lies wholly in the wave:

KE1 = 1

4
ρR2U0

2 (35)
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and after impact the energy of the wave and the block are together given by

KE2 = ρR2

(
U2

2

6
+ U0

2

12

)
+ 1

2
MUt

2. (36)

When the results above are used, the loss of KE simplifies to

KE1 −KE2 = 1

6(1 + q)
ρR2U0

2, (37)

which is strictly positive for all q ≥ 0. Hence energy is always lost from the system. Most
energy is lost when q = 0 i.e. when the block has much greater mass than the wave. If the
block has negligible mass then q → ∞ and the block gains no energy and hence the wave
loses none.

5.3. BLOCK DISPLACEMENT: INELASTIC IMPACT

The displacement is useful to model because it can be compared with simple measurements
of damaged harbour works, and give a hindcast of the pressures which the waves might have
exerted.

For the motion of the block after impact we neglect the remaining force of the wave and
suppose that the block is brought to rest by the friction between the horizontal base and the
horizontal surface over which it slides. We calculate the total distance the block moves. If the
coefficient of friction is a constant, µ, then the displacement d is given by (Cox [25])

d = Ut
2

2µg
= U0

2

2µg

q2

(1 + q)2
. (38)

The first of the above equations is obtained by equating the initial kinetic energy of the
block with the work done in moving it a distance d against friction.

The expressions in (38) have several revealing features. The displacement, d is directly
proportional to the square of the speed of impact (hence the square of the impulse I ). The
displacement is small when q is small, i.e., when M is large compared with ρR2/3, which
is two-thirds of the wave mass. The distance d increases from zero as q increases from zero,
to a hypothetical maximum displacement of U0

2/(2µg). However, in this limit the block is
so light-weight that friction is no longer the only significant force on the block: then the
wave force after impact must also be taken into account. In practice for seawall blocks or
caissons the range of practical interest is at the lower end of the interval for q : 0 < q < 3,
approximately. Hence the maximum displacement might be much less than U0

2/(4µg).
As an example we take a solid block, of rectangular cross-section, of height equal to R =

10m, width 20m and density 2·5 times greater than the density of water. The coefficient of
friction µ = 0·6 (Goda [24, Section 4.3]). A wave impacts the block with a speed U0 =√
gR = 10m/s. Then according to Equation (38) the block translates a distance of about

0·033m.
If the block has half the mass, because it has square cross-section (height=width=R =

10m) then, with the other conditions unchanged, the block moves much further: d = 0·12m.
In practice such displacements might be lessened by the frictional resistance to motion

due to any neighbouring blocks in a structure which are not being impacted by the wave.
The displacement might be uphill or the block could pivot about its rear edge. Also we have
neglected friction during impact; accounting for this would lessen the initial velocity of the
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block. However, there is ample evidence that wave-impacts do move sections of vertical
breakwaters impressively large distances. Stevenson [26, 27] reports the destruction of the
breakwater at Wick Harbour: a straight, monolithic mass of thousands of tonnes of concrete.
This moved a distance at least as great as the width of its foundations by breaking waves.

Recently Hitachi [28] reports displacements of between a few centimetres and 5m for cais-
sons 18m high and 24m wide, in a Japanese breakwater, due to high impacting waves during
one storm in 1991. A calculation, using Equation (38), for a caisson with these dimensions,
suggests a displacement of d = 0·12m due to one impact. A succession of wave impacts, (a
likely assumption during one storm) could therefore displace a caisson the distances measured
by Hitachi [28].

6. Compressible fluid impact: isosceles triangle

So far we have modelled the fluid as incompressible. It has long been suspected that impact
pressures are sufficiently high that the compressibility of water might be a significant factor
in accounting for impact pressures. But only in the last decade have the effects begun to be
quantified. The presence of even two percent by volume of air bubbles in sea water, generated
by breaking waves, dramatically reduces the speed of sound from around 1500m/s to less than
100m/s; see Van Wijngaarden [29]. Here we assume that the wave is a homogeneous medium
of well-mixed water and small air bubbles.

We model the wave water as compressible so that pressure disturbances travel as sig-
nals which have a constant speed of sound, c. Such impact problems have been solved by
Frankel [30] and Korobkin [6]. The latter paper contains a detailed justification for using
linear acoustics to model the kind of impact discussed below.

During impact the unsteady field of velocity V(x, y, t) can be described by a velocity
potential φ(x, y, t), where ∇φ = V. The associated deviation of pressure, from constant
atmospheric pressure, is p(x, y, t) = −ρ0φt . The following model equations are used in
acoustics and have already been linearised from Euler’s equations under the assumptions of
low Mach number (|u|/c � 1) and negligible nonlinear terms. (The variables x, y are the
usual cartesian coordinates.)

ut = −ρ0
−1px, (39)

vt = −ρ0
−1py, (40)

where ρ0 is the equilibrium density.
Next is a linearised equation of mass-continuity, for the density ρ. The density is assumed

(i) to be a function of pressure alone, and (ii) to differ little from its equilibrium value.

ρt = −ρ0(ux + vy). (41)

To close the model we have an effective equation of state:

dp

dρ
= c2. (42)

From Equations (39) to (42) it is easy to show that φ satisfies the linear wave equation

c−2φtt = φxx + φyy. (43)
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The equations admit discontinuities in u, v, p, ρ governed by suitable jump conditions.
In the following the wave is an idealised shape in order that we may calculate an exact

solution. We take the same arrangement as shown in Figure 2 for a sea wave, idealised as
an isosceles right-angled triangle, which meets an impermeable rigid wall at x = 0, with
normal component of velocity U0 at impact. For simplicity we take the velocity field of the
wave, before impact, to be V1 = U0i. The wave face stays in contact with the wall throughout
impact.

The domain of the initial-boundary-value problem for φ is augmented by anti-reflection of
the triangle in its free surface, to form a square domain, S: −R ≤ x ≤ 0 and 0 ≤ y ≤ R. The
boundary conditions are ∂φ/∂x = U0 − U0H(t) on x = 0 and ∂φ/∂y = U0H(t) on y = R,
where H(t) is Heaviside’s function. The normal derivative of φ is zero on the other two sides
of S. At t = 0 the initial conditions are φ = U0x, and φt = 0.

We solve by setting φ equal to the sum of a quadratic potential (to accommodate the
boundary conditions) and a double-sum over harmonic modes. Each of these satisfies the
homogeneous derivative boundary conditions and takes the following form:

Amn cos
(mπx
R

)
cos

(nπy
R

)
cos

(
πct

√
m2 + n2

R

)
,

wherem and n ∈ {0, 1, 2, 3 · · · } and the Fourier coefficients Amn are determined by our initial
data. It turns out that A00 = 0 and Amn = 0 unless either m = 0 or n = 0. Consequently
the double-sum in the general solution folds up into just one summation, over time-periodic
terms:

φ(x, y, t)=U0x− H(t)U0

2R

(
[x+R]2 −y2 − 4R2

π2

∞∑
n=1

cos nπct
R

n2

[
cos

nπx

R
− (−1)n cos

nπy

R

])
.

(44)

The associated pressure is

p(x, y, t) = H(t)ρU0c
2

π

∞∑
n=1

sin nπct
R

n

(
cos

nπx

R
− (−1)n cos

nπy

R

)
. (45)

The summations in (44, 45) can be written in closed form, but it is easier to discuss the
results graphically. Figure 4 illustrates the following discussion, which is a physical interpre-
tation of the formal solution (44, 45).

At the start of impact (t = 0) a compression-wave front AB moves leftward from the wall.
Immediately AB begins to reflect (from the free surface, y = x+R) another, horizontal wave-
front BC, of equal and opposite amplitude. BC descends from W towards the bed. Both wave
fronts travel at speed c, and their associated pressure fields superpose. Outside the rectangle
ABCO, and below the free surface, the pressure is zero, and the arrangement portrayed in
Figure 4 satisfies the zero-pressure boundary condition at the free surface. The wave fronts
are equally inclined, at π/4 to the plane free-surface. Inside ABCO the pressure is time-
invariant (for the moment) and equal to pJ , which is also spatially uniform in ABCO. From
t = 0 to t = R/c, pJ is the so-called water-hammer pressure ρcU0. The time t = R/c

coincides with the instant at which AB reaches the tail T of the triangle, and equals the instant
at which BC reaches the bed. The wave front reflects from the bed and T. After reflection BC
rises and its reflection in the free surface, AB, propagates to the right. ABCO now contains
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Figure 4. A compression wave front AB moves at
the speed of sound, c, away from the wall. It reflects
from the free surface, making a second wave front
BC. In the region ABCO the pressure is uniform and
equals the constant ρ0U0c. After BC reflects from
the bed, the pressure in ABCO changes to −ρ0U0c.
The compression waves repeatedly reflect from the
wall, bed and free-surface, forming a standing wave
system of period 2R/c.

Figure 5. As Figure 4. The associated velocity fields
are uniform in each of the three regions. Note that
for a fluid particle near W the fluid ascends with
velocity U0j for a time much longer than for a par-
ticle near the bed. The time-averaged velocity varies
linearly with position in accord with incompressible
fluid theory.

fluid at uniform pressure −ρ0U0c. At time t = 2R/c the wave front AB returns to the wall.
Subsequent reflections repeat the cycle described for t : 0 ≤ t ≤ 2R/c. The wave-fronts
describe a standing wave pattern for as many periods as we may expect the water wave domain
to remain close to an isosceles triangle.

Next we find the changes in the velocity during impact. Figure 5 shows the velocity fields
in the three regions of the triangle during impact. As AB moves left the velocity component
normal to the wave front changes according to the following jump condition, obtained from
integrating (39) across AB from the state ‘1’, before impact, to state ‘J ’, inside ABCO.

c[u]J1 = −ρ−1
0 [p]J1 . (46)

Therefore, from Equation (45)

c (uJ (−ct, y) − U0) = −ρ−1
0 ρ0U0c, (47)

hence

uJ (x, y) = 0 for (x, y) ∈ ABCO (48)

and in ABCO the vertical velocity is unchanged from zero, its initial state.
As BC descends the wave front alters the vertical velocity component. Equation (40) gives

the jump condition from state ‘J ’ inside ABCO to a state ‘2’ above front BC, in the region
BWC.

c[v]2
J = −ρ0

−1[p]2
J . (49)

From Equation (45)

cv2(x, R − ct) = ρ0
−1ρ0cU0, (50)

hence
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v2(x, y) = U0 for (x, y) ∈ BWC. (51)

Also BC leaves unchanged the horizontal velocity component, so u2 = uJ = 0 in BWC.
At time t = R/c the wave front BC reflects from the bed. Inside ABCO the pressure

changes to −ρ0U0c and the velocity field reverts to U0i in TAB, (and zero velocity inside
ABCO) as AB and BC sweep back across the triangle.

The time-average of the velocity potential (44), over one period t : T ≤ t ≤ T + 2R/c,
where T > 0 is arbitrary, is

φm(x, y) = U0

2R
(R2 − x2 + y2), (52)

defined throughout the triangle. This agrees with the sudden change in velocity potential
predicted by (27) from the theory for an incompressible fluid: P = ρ0(φ1 − φ2), where we
take φ1 = U0x and φ2 = φm. The potential (52) can be used to calculate the fluid displacement
over an integer number of compression wave periods. The nett displacement is non-zero and
the fluid spreads up the wall.

The velocity potential (44) contains oscillatory time-dependent terms. In a dissipative
medium the terms cos(nπct/R) are supplemented by factors which decay exponentially with
increasing t . So we can expect the potential to evolve to leave φ = U0x − U0/2R([x +
R]2 − y2) = φm, after a suitably large number of periods. Under these circumstances the
time-integral of p from t = 0 to t = ∞ is close to the pressure impulse (27). The distortion of
the free surface with increasing time disrupts the perfectly repeated reflections modelled here,
hence the standing compression waves might degenerate into a complex web of reflections,
whose average velocity potential might be identified with φm, as given by (52).

The standing pressure-wave field contains potential energy which is unable to radiate to
infinity. This is in contrast with the radiation found in the unbounded geometries treated by
Korobkin [6] and Korobkin and Peregrine [18]. Compression waves store within the triangle
some of the energy that is lost from the kinetic energy of the incident wave. The remainder is
accounted for by the constraint that the fluid remains in contact with the wall after impact.

7. Conclusions

By treating Lagrange’s equations of motion we modify our interpretation of the pressure
impulse to the time-integral of the fluid pressure following the motion of each fluid particle.
The classical free-surface boundary condition P = 0 is confirmed. It is appropriate to solve
for P in a domain which coincides with the physical fluid domain at the instant of impact.

During the impact of an incompressible fluid there is a well-known loss of (kinetic) energy.
This is known to be directly attributable to the inelastic boundary condition usually applied
on the basis of common experience. But a condition of elastic rebound is the only impact-
boundary condition which admits kinetic energy conservation for an incompressible fluid.

Some simple potentials are suitable solutions for P in models of fluid impact. For the
impact of an acute-angled wedge the solution is linear, and therefore predicts a non-singular,
post-impact velocity field. However, for wedge angles which are obtuse the solution has a
singular derivative at the vertex, corresponding to unbounded fluid speed after impact.

An exact solution is presented for impact on the interior of a circular cylinder. It is shown
that the confines of the cylinder enhance the impulse on the bed of the container. Another
solution, suitable for a triangle of fluid impacting a rigid wall illustrates some matters of sea
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wave impact on a vertical wall. The solution is adapted in Section 5 to wave interaction with
a movable wall. The well known energy loss is not explained away by allowing the wave to
do work on a movable wall. The sliding of the block after impact is small if the mass of the
block is much greater than the mass of the wave.

For the same triangular wave, but with a compressible fluid, we present an exact solution
to the linear acoustic equations. The solution contains standing waves which store some of the
energy lost from the kinetic energy of the incident water wave. The solution implies that the
time-averaged fluid velocity is the same as that predicted by pressure impulse theory for an
incompressible liquid.
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